
1!
CIS 422/522

CIS 422/522 Fall 2011! 1!

Modularization  
and  

Interface Specification!

Designing a module structure!
Communicating design decisions!

CIS 422/522 Fall 2011! 2!

Architecture Design Process!

Building architecture to address business goals:!
1.  Understand the goals for the system!
2.  Define the quality requirements!
3.  Design the architecture"

1.  Views: which architectural structures should we use?!
2.  Documentation: how do we communicate design decisions?!
3.  Design: how do we decompose the system?!

4.  Evaluate the architecture (is it a good design?)!

CIS 422/522 Fall 2011! 3!

Module Structure Design Goals!

•  For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”!

•  Properties of a “good” module structure!
–  Components can be designed independently!
–  Components can be understood independently!
–  Components can be tested independently!
–  Components can be changed independently!
–  It is clear where to put or find specific information!
–  Integration goes smoothly!

2!
CIS 422/522

CIS 422/522 Fall 2011! 4!

What is a module?!

•  Concept due to David Parnas (conceptual basis for
objects)!

•  A module is characterized by two things:!
–  Its interface: services that the module provides to other parts

of the systems!
–  Its secrets: what the module hides (encapsulates). Design

and implementation decisions that other parts of the system
should not depend on"

•  Modules are abstract, design-time entities !
–  Modules are “black boxes” – specifies the visible properties

but not the implementation!
–  May, or may not, directly correspond to programming

components like classes/objects!
•  E.g., one module may be implemented by several objects!

CIS 422/522 Fall 2011! 5!

A Simple Module!

•  A simple integer stack!
•  The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.!

–  push: push integer on stack top!
–  pop: remove top element!
–  top: get value of top element!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  A module spec is abstract:
describes the services provided but
allows many possible
implementations!

•  Note: a real spec needs much more
than this (discuss later)!

stack
int top()

push(int)

pop()

CIS 422/522 Fall 2011! 6!

Why these properties?!

Module Implementer!
•  The specification tells me

exactly what capabilities my
module must provide to users!

•  I am free to implement it any
way I want to!

•  I am free to change the
implementation if needed as
long as I don’t change the
interface!

Module User!
•  The specification tells me how

to use the module’s services
correctly!

•  I do not need to know anything
about the implementation
details to write my code!

•  If the implementation changes,
my code stays the same!

Key idea: the abstract interface specification defines!
a contract between a module’s developer and its users  

that allows each to proceed independently!

3!
CIS 422/522

CIS 422/522 Fall 2011! 7!

Notional Modules!

Problem

Interface

Encapsulated

Interface

Encapsulated Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

What characterizes
a module?

CIS 422/522 Fall 2011! 8!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules = !
Work

assignments!

Parent Modules
= !

Buckets!

CIS 422/522 Fall 2011! 9!

Modular Structure!
•  Architecture = components, relations, and interfaces!
•  Components!

–  Called modules!
–  Leaf modules are work assignments!
–  Non-leaf modules are the union of their submodules!

•  Relations (connectors)!
–  submodule-of => implements-secrets-of!
–  The union of all submodules of a non-terminal module must

implement all of the parent module’s secrets!
–  Constrained to be acyclic tree (hierarchy)!

•  Interfaces (externally visible behavior)!
–  Defined in terms of access procedures (services or methods)!
–  Only access to internal state!

4!
CIS 422/522

CIS 422/522 Fall 2011! 10!

A Decomposition Approach!

CIS 422/522 Fall 2011! 11!

Decomposition Strategies Differ!

•  How do we develop this structure so that we
know the leaf modules make independent work
assignments?!

•  Many ways to decompose hierarchically!
–  Functional: each module is a function!
–  Pipes and Filters: each module is a step in a chain of

processing!
–  Transactional: data transforming components!
–  Client/server!
–  Use-case driven development!

•  But, these result in different kinds of
dependencies (strong coupling)!

CIS 422/522 Fall 2011! 12!

Submodule-of Relation!

•  To define the structure, need the relation and the
rule for constructing the relation!

•  Relation: sub-module-of!
•  Rules!

–  If a module holds decisions that are likely to change
independently, then decompose it into submodules!

–  Don’t stop until each module contains only things likely
to change together!

–  Anything that other modules should not depend on
become secrets of the module (e.g., implementation
details)!

–  If the module has an interface, only things not likely to
change can be part of the interface!

5!
CIS 422/522

CIS 422/522 Fall 2011! 13!

Effects of Changes!

•  Consider what happens to
communication among
module developers!

•  Suppose we have groups of
requirements R1 – R3:!

–  R1 and R3 are related and
likely to change together!

–  R2 is likely to change
independently!

•  Suppose we put R1 and R2
in the same module and
assign to different teams!

–  What happens when R1
changes?!

–  R2?!
•  Suppose R1 and R3 are put

in the same module?!

R3!
R2!

R1!

R2!
R1! R3!

Interface! Interface!

CIS 422/522 Fall 2011! 14!

Applied Information Hiding!

•  The rule we just described is called the
information hiding principle"

•  Design principle of limiting dependencies
between components by hiding information other
components should not depend on!

•  An information hiding decomposition is one
following the design principles that:!
–  System details that are likely to change independently

are encapsulated in different modules !
–  The interface of a module reveals only those aspects

considered unlikely to change!

CIS 422/522 Fall 2011! 15!

Design Principles!

6!
CIS 422/522

CIS 422/522 Fall 2011! 16!

Three Key Design Principles!

•  Address the basic issue: which constructs are
essential to the problem solution vs. which
can change!
–  “Fundamental assumptions”!
–  “Likely changes”!

•  Most solid first!
•  Information hiding !
•  Abstraction!

CIS 422/522 Fall 2011! 17!

Principle: Most Solid First!

•  View design as a sequence of decisions!
–  Later decisions depend on earlier!
–  Early decisions harder to change!

•  Most solid first: in a sequence of decisions, those that
are least likely to change should be made first!

•  Goal: reduce rework by limiting the impact of changes!
•  Application: used to order a sequence of design

decisions!
–  Generally applicable to design decisions!
–  Module decomposition – ease of change!
–  Developing families – create most commonality!

CIS 422/522 Fall 2011! 18!

Information Hiding!

•  Information hiding: Design principle of limiting
dependencies between components by hiding
information other components should not
depend on !

•  An information hiding decomposition is one
following the design principles that (Parnas):!
–  System details that are likely to change

independently are encapsulated in different
modules !

–  The interface of a module reveals only those
aspects considered unlikely to change!

7!
CIS 422/522

CIS 422/522 Fall 2011! 19!

Abstraction!

•  General: disassociating from specific
instances to represent what the instances
have in common !
–  Abstraction defines a one-to-many relationship

E.g., one type, many possible implementations!
•  Modular decomposition: Interface design

principle of providing only essential
information and suppressing unnecessary
detail!

CIS 422/522 Fall 2011! 20!

Abstraction!

•  Two primary uses!
•  Reduce Complexity!

–  Goal: manage complexity by reducing the amount of
information that must be considered at one time!

–  Approach: Separate information important to the problem at
hand from that which is not!

•  Abstraction suppresses or hides “irrelevant detail”!
•  Examples: stacks, queues, abstract device!

•  Model the problem domain!
–  Goal: leverage domain knowledge to simplify understanding,

creating, checking designs!
–  Approach: Provide components that make it easier to model

a class of problems!
•  May be quite general (e.g., type real, type float)!
•  May be very problem specific (e.g., class automobile, book object)!

CIS 422/522 Fall 2011! 21!

Example: Simple Library Model!

•  What are the abstractions?!
•  What information is hidden?!

8!
CIS 422/522

CIS 422/522 Fall 2011! 22!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules = !
Work

assignments!

Parent Modules!

CIS 422/522 Fall 2011! 23!

Documenting a Module Structure!

Communicating Architectural Decisions!

CIS 422/522 Fall 2011! 24!

Architecture Development Process!

Building architecture to address business goals:!
1.  Understand the goals for the system!
2.  Define the quality requirements!
3.  Design the architecture!

1.  Views: which architectural structures should we use?!
2.  Documentation: how do we communicate design decisions?!
3.  Design: how do we decompose the system?!

4.  Evaluate the architecture (is it a good design?)!

9!
CIS 422/522

CIS 422/522 Fall 2011! 25!

Architectural Specification!
Module Guide!

–  Documents the module structure:!
•  The set of modules!
•  The responsibility of each module in terms of the

module’s secret!
•  The “submodule-of relationship”!
•  The rationale for design decisions !

–  Document purpose(s)!
•  Guide for finding the module responsible for some aspect

of the system behavior!
– Where to find or put information!
– Determine where changes must occur!

•  Baseline design document!
•  Provides a record of design decisions (rationale)!

CIS 422/522 Fall 2011! 26!

Architectural Specification!
Module Interface Specifications!

–  Documents all assumptions user’s can make about the
module’s externally visible behavior (of leaf modules)!

•  Access programs, events, types, undesired events!
•  Design issues, assumptions!

–  Document purpose(s)!
•  Provide all the information needed to write a module’s

programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)!

•  Specify required behavior by fully specifying behavior of the
module’s access programs!

•  Define any constraints!
•  Define any assumptions!
•  Record design decisions!

CIS 422/522 Fall 2011! 27!

Excerpts From The FWS Module Guide (1)!

1.  Behavior Hiding Modules!
The behavior hiding modules include programs that need to be changed if the
required outputs from a FWS and the conditions under which they are produced
are changed. Its secret is when (under what conditions) to produce which
outputs. Programs in the behavior hiding module use programs in the Device
Interface module to produce outputs and to read inputs.!
1.1 Controller!
Service!
Provide the main program that initializes a FWS.!
Secret!
How to use services provided by other modules to start and maintain the proper
operation of a FWS.!
!

10!
CIS 422/522

CIS 422/522 Fall 2011! 28!

Excerpts From The FWS Module Guide (2)!

2.  Device Interface Modules!
!The device interface modules consist of those programs that need to be changed if the input
from hardware devices to FWSs or the output to hardware devices from FWSs change. The
secret of the device interface modules is the interfaces between FWSs and the devices that
produce its inputs and that use its output.!

!!
2.1. Wind Sensor Device Driver!
!Service!
!Provide access to the wind speed sensors. There may be a submodule for each sensor type.!
!Secret!
!How to communicate with, e.g., read values from, the sensor hardware.!
!Note!
!This module hides the boundary between the FWS domain and the sensors domain. The
boundary is formed by an abstract interface that is a standard for all wind speed sensors.
Programs in this module use the abstract interface to read the values from the sensors.!

CIS 422/522 Fall 2011! 29!

Module Structure Accomplishments!

•  What have we accomplished in creating the
module structure?!

•  Divided the system into parts (modules) such that!
–  Each module is a work assignment for a person or

small team!
–  Each part can be developed independently!
–  Every system function is allocated to some module!

•  Informally described each module!
–  Services: services that the module implements that

other modules can use!
–  Secrets: implementation decisions that other modules

should not depend on!

CIS 422/522 Fall 2011! 30!

Questions!

